| 登录

资源库

关键词
搜索
分类










行业














7 结果
Filter by:
Product
Altair
Partner
Slide for More Clear All Apply
Solution

Product Type

  • All
  • Analysis and Optimization
  • Cloud and HPC
  • Enterprise & Analytics
  • Industrial Design
  • Modeling and Visualization
  • Product Design and Dev't

Discipline

  • 1d Systems
  • Additive Manufacturing
  • Advanced Mathematics & Analyics
  • Casting
  • CFD
  • Composites
  • Concept Design
  • Crash & Safety
  • Design
  • Durability
  • Electromagnetics
  • Enterprise Solutions
  • Ergonomics
  • HPC
  • Hydraulics & Pneumatics
  • Industrial Design
  • Injection Molding
  • Internet of Things
  • Lightweighting
  • Manufacturing
  • Materials Library
  • Model-Based Development
  • Modeling and Simulation
  • Multi-Body Dynamics
  • Multiphysics
  • NVH
  • Optimization
  • Product Design
  • Project Management
  • Rendering
  • Staffing Solutions
  • Stress
  • Thermal
  • Vehicle Dynamics
Clear All Apply
Language
  • Chinese
  • English
  • French
  • German
  • Italian
  • Japanese
  • Korean
  • View All
Providing the Ecosystem for Next Generation Vehicle Powertrains - Altair - Romax White Paper
While designers are juggling with multiphysics constraints to deliver their next vehicles generation in time,
together Altair and Romax Technology offer a complete model-based, multiphysics solution for design, simulation and optimization of complex electro-mechanical powertrains. With extensive expertise, we are available to respond to questions from different design teams to help dive down into the technologies, including motors, controllers, gearbox, noise and vibration, oiling and cooling.

Magneto Vibro Acoustic Design of PWM Fed Induction Machines
Induction Motors (IM) are widely used in various industries. To ensure their speed control, IM will be supplied with pulse width modulation (PWM). This kind of supply, can impact efficiency of the motor and degrade its vibro-acoustic behavior, generating noise nuisance. To tackle these technical challenges and ensure best-in class acoustic comfort for users, it is necessary to design a quiet e-motors at the early stage of design.
The first aim of this paper is to show a new method to reduce noise and vibration due to PWM supply of induction machine. The proposed approach allows the passive reduction of air-gap flux density harmonics in an induction machine. The second interest, is to show a new method to analyze the vibro-acoustic behavior of a PWM-fed IM. The method is fully finite element (FE) computation. Finally, the third interest of this article, is to compare noise and vibration results between the proposed FE method, magneto-vibro-acoustic coupling and measurements. Good agreement between measurements and computation will be shown.


E-motor Design using Multiphysics Optimization
Today, an e-motor cannot be developed just by looking at the motor as an isolated unit; tight requirements concerning the integration into both the complete electric or hybrid drivetrain system and perceived quality must be met. Multi-disciplinary and multiphysics optimization methodologies make it possible to design an e-motor for multiple, completely different design requirements simultaneously, thus avoiding a serial development strategy, where a larger number of design iterations are necessary to fulfill all requirements and unfavorable design compromises need to be accepted.



The project described in this paper is focused on multiphysics design of an e-motor for Porsche AG. Altair’s simulation-driven approach supports the development of e-motors using a series of optimization intensive phases building on each other. This technical paper offers insights on how the advanced drivetrain development team at Porsche AG, together with Altair, has approached the challenge of improving the total design balance in e-motor development.


Multi-physics Electric Motor Optimization for Noise Reduction
In an electric machine, the torque is generated by electromagnetic forces which also create some parasitic vibrations of the stator. These vibrations excite the mechanical structure on which the motor is fixed and generate sound. When designing the electric machine, this aspect has to be taken into account from the start since it depends on the harmonic content of the currents that feed the machine, on the shapes of the rotor and stator, and on the interaction of the electric frequencies with the natural mechanical modes of the structure.
To simulate this phenomenon, a coupling between electromagnetic calculations and vibration analysis has to be set-up. Some optimization procedure can also be added in order to reduce the noise.
In what follows, it is shown how Altair HyperWorks suite; specifically FluxTM, OptiStruct®, HyperMesh® and HyperStudy® products have been successfully used to perform a multi-physics optimization for noise reduction in a fuel pump permanent magnet motor.

OptiStruct for Structural Analysis: Not Just for Optimizations Anymore
Reprint of Engineering.com article on OptiStruct as a structural analysis tool with built-in optimization capabilities

Computer Simulation's Role in Advancing Composite Aircraft Structures
Reprint of an article published on the December 2014 issue of Aerospace & Defense Technology magazine


Optimization Drive Design - A Desktop Engineering Sponsored Report
Optimize every stage of product development with an integrated workflow that democratizes simulation and analysis. In this Desktop Engineering sponsored report Altair's vision for product optimization is analyzed

RSS icon Subscribe to RSS Feed

Be The First To Know

Subscribe